Решение контрольной работы по математике. Примеры решения задач типового расчета

Математика
Примеры решения задач по математике
Интегральное исчесление
Аналитическая геометрия
Введение в анализ
Задача Коши
Общее решение уравнения теплопроводности
Оценка погрешности и точность вычислений
Элементы линейной алгебры
Примеры решения типовых задач: матрицы
Примеры решения типовых задач:
уравнение плоскости
Решение контрольной работы по
математике
Функция нескольких переменных
Вычислим матрицу
Функции нескольких переменных
Предел функции
Решение примерного варианта контрольной работы
Пример.  Найти производные
Формула Остроградского-Гаусса.
Дивергенция векторного поля
Ротор (вихрь) векторного поля
Поверхностные интегралы второго рода
Локальные максимумы и минимумы ФНП
Вычисление двойного интеграла
Замена переменных в двойном интеграле
Вычислить повторный интеграл
Вычислить определенный интеграл
Криволинейные интегралы первого рода
Криволинейные интегралы второго рода
Поверхностные интегралы
Вычисление тройного интеграла
Объем тела вращения
Вычисление площади поверхности вращения
Вычисление площадей плоских фигур
Вычисление статических моментов
Замена переменных в тройном интеграле
Кратные интегралы
Интегральное исчисление в экономике
Вычисление длины дуги плоской кривой
Дифференциальные уравнения
Дифференцируемость функции
Предел функции
Вычислить криволинейный интеграл
Исследовать ряд на сходимость
Разложение в ряд Фурье
Найти область сходимости функционального ряда
Информатика
Информационная безопасность
Инженерная графика
Машиностроительное черчение
Сборочный чертеж
Системы автоматизированного
проектирования (САПР)
Физика
Примеры решения задач по физике

Механика твердого тела

Основы термодинамики
Электрические токи в металлах, вакууме и газах
Механические и электромагнитные колебания
Элементы электронной оптики
Элементы физики твердого тела

Элементы физики атомного ядра

Мировая энергетика и ядерные технологии
Источники энергии
Электротехника и электроника
Примеры решения задач по ТОЭ
Методы расчета электрических цепей
Законы Ома и Кирхгофа
Расчет переходного процесса
Использование программы Mathcad
Трехфазный асинхронный электродвигатель

 

Функции комплексной переменной

Определение и свойства функции комплексной переменной

 Пусть даны две плоскости комплексных чисел и на первой – множество D комплексных чисел z = x + iy, где i – мнимая единица (i2 = –1), на второй – множество G комплексных чисел w = u +iv.

Если каждому числу  по некоторому правилу f поставлено в соответствие определенное число , то говорят, что на множестве D задана функция комплексной переменной (ФКП), отображающая  множество D в множество G. Обозначается: w = f (z).

Множество D называется областью определения ФКП.

Функцию w = f (z) можно представить в виде

f (z) = u(x, y) + iv(x, y),

где u(x, y) – действительная часть ФКП, v(x, y) – мнимая часть ФКП, обе они – действительные функции от x, y.

Пример 1. . Здесь  = x – iy – число, сопряженное числу z= x+iy.

Выделим действительную и мнимую части ФКП:

 u = x2 – y2 – 2x;  v = 2xy + 2y.

Вычислим значение функции w в точке z1 = 2 – 3i:

.

Тот же результат получаем непосредственной подстановкой:

.

Говорят, что ФКП f (z) = u(x, y) +iv(x, y) имеет предел в точке z0, равный числу A = a + ib, если . Обозначается: .

Существование предела ФКП w = f (z) при  в означает существование двух пределов: .

 ФКП f (z) = u(x, y) +iv(x, y) называется непрерывной в точке z0, если выполняется условие: .

 Непрерывность ФКП w = f (z) в точке z0 = x0 + iy0 эквивалентна непрерывности функций u(x, y) и v(x, y) в точке (x0, y0).

 

Дифференцирование ФКП. Аналитические ФКП

Производной от функции комплексной переменной w = f (z) в точке z0 называется предел:

,

где , и   произвольным образом.

Функцию w = f (z), дифференцируемую в точке z0 и некоторой ее окрестности, называют аналитической, или регулярной функцией в точке z0.

 Точки, в которых ФКП не является аналитической, называют особыми точками этой функции.

Для того, чтобы функция f (z) = u(x, y) +iv(x, y) была аналитической в области D необходимо и достаточно, чтобы частные производные 1-го порядка функций u(x, y) и v(x, y) были непрерывны в этой области и выполнялись бы условия:

, (10)

называемые условиями Эйлера-Даламбера, или условиями Коши-Римана.

Пример 2. Проверить аналитичность ФКП .

 Þ u = x2 – y2 – 2x; v = 2xy + 2y (см. пример 1). Проверим выполнение условий Коши-Римана:

.

Условия (10) не выполняются, следовательно, эта функция не является аналитической.

Машиностроительное черчение выполнение четежей