Решение контрольной работы по математике. Примеры решения задач типового расчета

Выполнение чертежей http://pargraf.ru/

Пример 3. Проверить аналитичность ФКП .

Выделим действительную и мнимую части функции:

.

Проверим выполнение условий Коши-Римана:

.

Условия выполняются во всех точках, кроме особой точки (0, 0), в которой функции и u(x, y) и v(x, y) не определены. Следовательно,  функция  аналитическая при .

Если функция w = f (z) аналитическая в области D, то ее производную  можно найти, используя правила дифференцирования, аналогичные правилам дифференцирования функции одной действительной переменной.

Пример 4. Вычислить значение производной функции  в точке

z0 = – 1+ i.

Функция  – аналитическая, а значит, дифференцируемая во всей своей области определения (см. пример 3). Ее производная:

.

Вычислим значение производной в точке z0 = – 1+ i:

Следовательно, .

Машиностроительное черчение выполнение четежей