Решение контрольной работы по математике. Примеры решения задач типового расчета

Математика
Примеры решения задач по математике
Интегральное исчесление
Аналитическая геометрия
Введение в анализ
Задача Коши
Общее решение уравнения теплопроводности
Оценка погрешности и точность вычислений
Элементы линейной алгебры
Примеры решения типовых задач: матрицы
Примеры решения типовых задач:
уравнение плоскости
Решение контрольной работы по
математике
Функция нескольких переменных
Вычислим матрицу
Функции нескольких переменных
Предел функции
Решение примерного варианта контрольной работы
Пример.  Найти производные
Формула Остроградского-Гаусса.
Дивергенция векторного поля
Ротор (вихрь) векторного поля
Поверхностные интегралы второго рода
Локальные максимумы и минимумы ФНП
Вычисление двойного интеграла
Замена переменных в двойном интеграле
Вычислить повторный интеграл
Вычислить определенный интеграл
Криволинейные интегралы первого рода
Криволинейные интегралы второго рода
Поверхностные интегралы
Вычисление тройного интеграла
Объем тела вращения
Вычисление площади поверхности вращения
Вычисление площадей плоских фигур
Вычисление статических моментов
Замена переменных в тройном интеграле
Кратные интегралы
Интегральное исчисление в экономике
Вычисление длины дуги плоской кривой
Дифференциальные уравнения
Дифференцируемость функции
Предел функции
Вычислить криволинейный интеграл
Исследовать ряд на сходимость
Разложение в ряд Фурье
Найти область сходимости функционального ряда
Информатика
Информационная безопасность
Инженерная графика
Машиностроительное черчение
Сборочный чертеж
Системы автоматизированного
проектирования (САПР)
Физика
Примеры решения задач по физике

Механика твердого тела

Основы термодинамики
Электрические токи в металлах, вакууме и газах
Механические и электромагнитные колебания
Элементы электронной оптики
Элементы физики твердого тела

Элементы физики атомного ядра

Мировая энергетика и ядерные технологии
Источники энергии
Электротехника и электроника
Примеры решения задач по ТОЭ
Методы расчета электрических цепей
Законы Ома и Кирхгофа
Расчет переходного процесса
Использование программы Mathcad
Трехфазный асинхронный электродвигатель

Справочный материал к выполнению контрольной работы №2

Двойной интеграл

Вычисление двойного интеграла в декартовых координатах

Пусть функция 2-х переменных z = f (x, y) задана и непрерывна в замкнутой области xOy. Двойной интеграл от этой функции по области D имеет вид: , где .

Область xOy называется правильной в направлении оси Oy, если всякая прямая, параллельная оси Oy пересекает границу области не более, чем в двух точках (за исключением участков границы, параллельных Oy).

Если область D – правильная в направлении оси Oy (рис. 2), то ее можно задать системой неравенств:

В этом случае двойной интеграл от функции z = f (x, y) по области D можно вычислить при помощи двукратного (повторного) интеграла:

.

Здесь внутренний интеграл вычисляется по переменной y в предположении, что x – постоянная (x = const); результатом вычисления внутреннего интеграла является некоторая функция Ф (x). Затем вычисляется внешний интеграл от Ф (x) по переменной x в постоянных пределах, в результате получается число.

Пример. Вычислить , если , D:

Если область D – правильная в направлении оси Oх (рис. 3), то она задается системой неравенств:  и тогда двойной интеграл сводится к повторному интегралу по формуле:

.

Здесь внутренний интеграл вычисляется по переменной x в предположении, что y = const; результатом вычисления внутреннего интеграла является некоторая функция от y, которая затем интегрируется в постоянных пределах.

Если область D – правильная в обоих направлениях, то повторный интеграл не зависит от порядка интегрирования, и для вычисления двойного интеграла можно использовать любой из двух порядков интегрирования:

.

 Если область D – неправильная в обоих направлениях, то ее можно разбить на правильные части и воспользоваться свойством аддитивности двойного интеграла: .

Машиностроительное черчение выполнение четежей