Решение контрольной работы по математике. Примеры решения задач типового расчета

Вычисление двойного интеграла в полярных координатах

Пусть область D задается в полярных координатах системой неравенств  Такая область (рис. 4) является правильной в полярной системе координат (каждый луч, выходящий из полюса, пересекает границу области не более, чем в 2-x точках, за исключением участков границы, совпадающих с некоторым полярным лучом).

Преобразование двойного интеграла по области D к полярным координатам осуществляется при помощи формул

:

.

Полученный двойной интеграл в полярных координатах может быть сведен к повторному интегралу при помощи неравенств, задающих область D. В результате получаем формулу перехода от двойного интеграла к повторному интегралу в полярных координатах:

.

Некоторые приложения двойных интегралов

 Если подынтегральная функция f (x, y) º 1, то двойной интеграл от функции f (x, y) по области D равен площади области интегрирования:

.

Если область D занята тонкой пластинкой и  – поверхностная плотность распределения неоднородного материала (т.е. масса единицы площади), то при помощи двойного интеграла можно вычислить массу пластинки, ее статические моменты относительно осей координат и другие величины.

Масса пластинки: m = .

Статический момент относительно оси Ox:

. (11)

Статический момент относительно оси Oy: My = .

Все перечисленные интегралы можно вычислить в декартовых либо в полярных координатах, переходя к соответствующему повторному интегралу.

Машиностроительное черчение выполнение четежей