Решение контрольной работы по математике. Примеры решения задач типового расчета

Математика
Примеры решения задач по математике
Интегральное исчесление
Аналитическая геометрия
Введение в анализ
Задача Коши
Общее решение уравнения теплопроводности
Оценка погрешности и точность вычислений
Элементы линейной алгебры
Примеры решения типовых задач: матрицы
Примеры решения типовых задач:
уравнение плоскости
Решение контрольной работы по
математике
Функция нескольких переменных
Вычислим матрицу
Функции нескольких переменных
Предел функции
Решение примерного варианта контрольной работы
Пример.  Найти производные
Формула Остроградского-Гаусса.
Дивергенция векторного поля
Ротор (вихрь) векторного поля
Поверхностные интегралы второго рода
Локальные максимумы и минимумы ФНП
Вычисление двойного интеграла
Замена переменных в двойном интеграле
Вычислить повторный интеграл
Вычислить определенный интеграл
Криволинейные интегралы первого рода
Криволинейные интегралы второго рода
Поверхностные интегралы
Вычисление тройного интеграла
Объем тела вращения
Вычисление площади поверхности вращения
Вычисление площадей плоских фигур
Вычисление статических моментов
Замена переменных в тройном интеграле
Кратные интегралы
Интегральное исчисление в экономике
Вычисление длины дуги плоской кривой
Дифференциальные уравнения
Дифференцируемость функции
Предел функции
Вычислить криволинейный интеграл
Исследовать ряд на сходимость
Разложение в ряд Фурье
Найти область сходимости функционального ряда
Информатика
Информационная безопасность
Инженерная графика
Машиностроительное черчение
Сборочный чертеж
Системы автоматизированного
проектирования (САПР)
Физика
Примеры решения задач по физике

Механика твердого тела

Основы термодинамики
Электрические токи в металлах, вакууме и газах
Механические и электромагнитные колебания
Элементы электронной оптики
Элементы физики твердого тела

Элементы физики атомного ядра

Мировая энергетика и ядерные технологии
Источники энергии
Электротехника и электроника
Примеры решения задач по ТОЭ
Методы расчета электрических цепей
Законы Ома и Кирхгофа
Расчет переходного процесса
Использование программы Mathcad
Трехфазный асинхронный электродвигатель

Тройной интеграл

Вычисление тройного интеграла в декартовых координатах

Пусть функция 3-х переменных u = f (x, y, z) задана и непрерывна в замкнутой области V xOyz. Тройной интеграл от этой функции по области V имеет вид: , где .

Если область V – правильная в направлении оси Oz (рис. 5), то ее можно задать системой неравенств:  где z = z1 (x, y) и z = z2 (x, y) – это уравнения поверхностей, ограничивающих область (тело) V соответственно снизу и сверху (рис. 5).

 Если область D можно задать системой неравенств

  то

В этом случае тройной интеграл от функции u = f (x, y, z) по области V можно вычислить при помощи трехкратного повторного интеграла:

.

Здесь каждый внутренний интеграл вычисляется по «своей» переменной интегрирования в предположении, что переменные интегрирования внешних интегралов остаются постоянными.

Существует всего 6 вариантов сведения тройного интеграла к трехкратному в декартовых координатах (в зависимости от выбранного порядка интегрирования).

 

 

Вычисление тройного интеграла в цилиндрических координатах

Цилиндрические координаты точки М в пространстве – это ее полярные координаты на плоскости xOy и координата z, т.е. .

Преобразование тройного интеграла по области V к цилиндрическим координатам осуществляется при помощи формул , , .

Если область V задана системой неравенств:

  причем  то V:

Вычисление тройного интеграла по области V в цилиндрических координатах сводится к вычислению трехкратного интеграла в соответствии с записанной системой неравенств для области V:

.

Машиностроительное черчение выполнение четежей