Решение контрольной работы по математике. Примеры решения задач типового расчета

Математика
Примеры решения задач по математике
Интегральное исчесление
Аналитическая геометрия
Введение в анализ
Задача Коши
Общее решение уравнения теплопроводности
Оценка погрешности и точность вычислений
Элементы линейной алгебры
Примеры решения типовых задач: матрицы
Примеры решения типовых задач:
уравнение плоскости
Решение контрольной работы по
математике
Функция нескольких переменных
Вычислим матрицу
Функции нескольких переменных
Предел функции
Решение примерного варианта контрольной работы
Пример.  Найти производные
Формула Остроградского-Гаусса.
Дивергенция векторного поля
Ротор (вихрь) векторного поля
Поверхностные интегралы второго рода
Локальные максимумы и минимумы ФНП
Вычисление двойного интеграла
Замена переменных в двойном интеграле
Вычислить повторный интеграл
Вычислить определенный интеграл
Криволинейные интегралы первого рода
Криволинейные интегралы второго рода
Поверхностные интегралы
Вычисление тройного интеграла
Объем тела вращения
Вычисление площади поверхности вращения
Вычисление площадей плоских фигур
Вычисление статических моментов
Замена переменных в тройном интеграле
Кратные интегралы
Интегральное исчисление в экономике
Вычисление длины дуги плоской кривой
Дифференциальные уравнения
Дифференцируемость функции
Предел функции
Вычислить криволинейный интеграл
Исследовать ряд на сходимость
Разложение в ряд Фурье
Найти область сходимости функционального ряда
Информатика
Информационная безопасность
Инженерная графика
Машиностроительное черчение
Сборочный чертеж
Системы автоматизированного
проектирования (САПР)
Физика
Примеры решения задач по физике

Механика твердого тела

Основы термодинамики
Электрические токи в металлах, вакууме и газах
Механические и электромагнитные колебания
Элементы электронной оптики
Элементы физики твердого тела

Элементы физики атомного ядра

Мировая энергетика и ядерные технологии
Источники энергии
Электротехника и электроника
Примеры решения задач по ТОЭ
Методы расчета электрических цепей
Законы Ома и Кирхгофа
Расчет переходного процесса
Использование программы Mathcad
Трехфазный асинхронный электродвигатель

Некоторые приложения тройных интегралов

 Если подынтегральная функция f (x, y, z) º 1, то тройной интеграл от нее по области V равен мере области интегрирования – объему пространственного тела, занимающего область V: .

Если  – это плотность неоднородного материала (т.е. масса единицы объема), из которого изготовлено тело, то при помощи тройного интеграла можно вычислить массу тела, его статические моменты относительно координатных плоскостей и другие величины. Например, формула для вычисления массы тела имеет вид:

. (12)

 

 

Криволинейный интеграл II рода (по координатам)

Общий вид криволинейного интеграла II рода (по координатам):

,

где BC – это дуга пространственной линии от точки B до точки C с указанным на ней направлением,  P (x, y, z), Q (x, y, z),  R (x, y, z) – некоторые функции, заданные во всех точках дуги BC.

В двумерном случае: , где BCxOy.

Если P (x, y), Q (x, y) – проекции на оси Ox и Oy вектора переменной силы , то

 А = (13)

– это работа силы  при перемещении точки ее приложения вдоль участка дуги BC.

Пусть кривая BC задана параметрически:  причем функции x (t) и y (t) – непрерывны и дифференцируемы по t, а tB, tC – значения параметра для начала и конца кривой (в точках B и C). Тогда

и вычисление криволинейного интеграла сводится к вычислению определенного интеграла по переменной t:

.

Векторная функция скалярного аргумента

Если каждому значению параметра t из некоторого промежутка  ставится в соответствие по некоторому правилу определенный вектор, то говорят, что задана вектор-функция скалярного аргумента t: .

Откладывая векторы  при  от начала координат, получаем траекторию движения конца вектора, называемую годографом вектор-функции .

Проекции вектора  на оси координат являются функциями аргумента t, поэтому можно записать вектор-функцию в координатной форме:

,

где векторы  – это орты координатных осей Ox, Oy и Oz.

Первую, вторую и т.д. производные вектор-функции  находят дифференцированием ее проекций x(t), y(t) и z(t) по аргументу t:

,

.

Если параметр t – это время, то векторное уравнение  называют уравнением движения точки, а годограф вектор-функции  является траекторией движения. Тогда вектор-производная  называется скоростью движения точки в момент времени t:

. (14)

Скорость движения – это вектор, направленный по касательной к траектории движения (годографу) в соответствующей точке в сторону возрастания параметра t. Вектор

 (15)

называется ускорением движения точки в момент времени t.

Машиностроительное черчение выполнение четежей