Решение контрольной работы по математике. Примеры решения задач типового расчета

Математика
Примеры решения задач по математике
Интегральное исчесление
Аналитическая геометрия
Введение в анализ
Задача Коши
Общее решение уравнения теплопроводности
Оценка погрешности и точность вычислений
Элементы линейной алгебры
Примеры решения типовых задач: матрицы
Примеры решения типовых задач:
уравнение плоскости
Решение контрольной работы по
математике
Функция нескольких переменных
Вычислим матрицу
Функции нескольких переменных
Предел функции
Решение примерного варианта контрольной работы
Пример.  Найти производные
Формула Остроградского-Гаусса.
Дивергенция векторного поля
Ротор (вихрь) векторного поля
Поверхностные интегралы второго рода
Локальные максимумы и минимумы ФНП
Вычисление двойного интеграла
Замена переменных в двойном интеграле
Вычислить повторный интеграл
Вычислить определенный интеграл
Криволинейные интегралы первого рода
Криволинейные интегралы второго рода
Поверхностные интегралы
Вычисление тройного интеграла
Объем тела вращения
Вычисление площади поверхности вращения
Вычисление площадей плоских фигур
Вычисление статических моментов
Замена переменных в тройном интеграле
Кратные интегралы
Интегральное исчисление в экономике
Вычисление длины дуги плоской кривой
Дифференциальные уравнения
Дифференцируемость функции
Предел функции
Вычислить криволинейный интеграл
Исследовать ряд на сходимость
Разложение в ряд Фурье
Найти область сходимости функционального ряда
Информатика
Информационная безопасность
Инженерная графика
Машиностроительное черчение
Сборочный чертеж
Системы автоматизированного
проектирования (САПР)
Физика
Примеры решения задач по физике

Механика твердого тела

Основы термодинамики
Электрические токи в металлах, вакууме и газах
Механические и электромагнитные колебания
Элементы электронной оптики
Элементы физики твердого тела

Элементы физики атомного ядра

Мировая энергетика и ядерные технологии
Источники энергии
Электротехника и электроника
Примеры решения задач по ТОЭ
Методы расчета электрических цепей
Законы Ома и Кирхгофа
Расчет переходного процесса
Использование программы Mathcad
Трехфазный асинхронный электродвигатель

 

Векторное поле

Поток векторного поля через поверхность

Если в любой точке M(x, y, z) области VxOyz задан вектор , то говорят, что в области V задано векторное поле .

Примеры: силовое поле , поле скоростей  текущей жидкости, поле электростатических напряженностей .

Векторное поле является заданным, если задана векторная функция   от координат точки M(x, y, z). Как правило, функцию задают в виде , где P (x, y, z), Q (x, y, z),  R (x, y, z) являются функциями, о которых предполагают, что они непрерывны и имеют непрерывные частные производные по x, y, z  в области V (область V может совпадать со всем пространством).

Аналогично определяют плоское векторное поле  в двумерной области D: .

Пусть в области VxOyz задана двусторонняя поверхность σ, в каждой точке которой определен орт внешней нормали  – единичной вектор, коллинеарный нормали к поверхности в этой точке и направленный в сторону, которую условились считать «внешней» стороной поверхности.

Поток векторного поля  через поверхность σ – это интеграл по поверхности σ от скалярного произведения вектора  на орт нормали  к поверхности (рис. 6):

.

Поток – это интегральная характеристика векторного поля, она является скалярной величиной. Например, для поля скоростей  текущей жидкости поток характеризует количество жидкости, проходящей через поверхность σ в направлении «внешней» нормали в единицу времени.

Если поверхность σ задана уравнением F(x, y, z) = 0, то вектор ее нормали коллинеарен градиенту функции, задающей поверхность: , следовательно, орт нормали

 .

Для вычисления поверхностного интеграла  поверхность σ проектируют на одну из координатных плоскостей, например, в область DxOy. Тогда , и вычисление потока сводится к вычислению двойного интеграла:

, (16)

где знак «+» следует брать в случае, когда вектор  и орт «внешней» нормали , указанный в задаче, совпадают по направлению; если эти векторы противоположны по направлению, следует брать знак «–».

 При вычислении двойного интеграла  нужно подынтегральную функцию выразить через переменные x, y, используя заданное уравнение поверхности F(x, y, z) = 0.

Поток вектора через замкнутую поверхность σ в направлении ее «внешней» нормали обозначают .

Машиностроительное черчение выполнение четежей