Решение контрольной работы по математике. Примеры решения задач

Математика
Примеры решения задач по математике
Интегральное исчесление
Аналитическая геометрия
Введение в анализ
Задача Коши
Общее решение уравнения теплопроводности
Оценка погрешности и точность вычислений
Элементы линейной алгебры
Примеры решения типовых задач: матрицы
Примеры решения типовых задач:
уравнение плоскости
Решение контрольной работы по
математике
Функция нескольких переменных
Вычислим матрицу
Функции нескольких переменных
Предел функции
Решение примерного варианта контрольной работы
Пример.  Найти производные
Формула Остроградского-Гаусса.
Дивергенция векторного поля
Ротор (вихрь) векторного поля
Поверхностные интегралы второго рода
Локальные максимумы и минимумы ФНП
Вычисление двойного интеграла
Замена переменных в двойном интеграле
Вычислить повторный интеграл
Вычислить определенный интеграл
Криволинейные интегралы первого рода
Криволинейные интегралы второго рода
Поверхностные интегралы
Вычисление тройного интеграла
Объем тела вращения
Вычисление площади поверхности вращения
Вычисление площадей плоских фигур
Вычисление статических моментов
Замена переменных в тройном интеграле
Кратные интегралы
Интегральное исчисление в экономике
Вычисление длины дуги плоской кривой
Дифференциальные уравнения
Дифференцируемость функции
Предел функции
Вычислить криволинейный интеграл
Исследовать ряд на сходимость
Разложение в ряд Фурье
Найти область сходимости функционального ряда
Информатика
Информационная безопасность
Инженерная графика
Машиностроительное черчение
Сборочный чертеж
Системы автоматизированного
проектирования (САПР)
Физика
Примеры решения задач по физике

Механика твердого тела

Основы термодинамики
Электрические токи в металлах, вакууме и газах
Механические и электромагнитные колебания
Элементы электронной оптики
Элементы физики твердого тела

Элементы физики атомного ядра

Мировая энергетика и ядерные технологии
Источники энергии
Электротехника и электроника
Примеры решения задач по ТОЭ
Методы расчета электрических цепей
Законы Ома и Кирхгофа
Расчет переходного процесса
Использование программы Mathcad
Трехфазный асинхронный электродвигатель

Наибольшее и наименьшее значения функции 2-х переменных в замкнутой области

 В 9.3 была сформулирована теорема Вейерштрасса (теорема 9.1), согласно которой всякая функция , непрерывная в замкнутой области U, ограниченной ломаной Г=, достигает в этой области своих наибольшего – наименьшего значений, для отыскания которых пользуемся следующим алгоритмом.

1. Находим критические точки, принадлежащие U.

2. На каждом звене  ломаной Г сводим функцию f к функции  одной переменной и выделяем на   критические точки функции .

3. Список точек, полученный в пунктах 1 и 2 дополняем вершинами ломаной Г.

4. Вычисляем значения функции в точках полученного списка и выбираем среди них наибольшее и наименьшее, которые и будут искомыми.

Пример 17. Найти наибольшее и наименьшее значения функции  в области D, заданной неравенствами .

Ñ Область D ограничена частью параболы  и отрезком прямой x = 4 (рис.9.3). 1) Находим критические точки из необходимого условия экстремума функции:  Решение системы: x =32,5, y = –13. Найденная критическая точка  не принадлежит D.

2) Исследуем функцию на границе. а) На участке . Функция  сводится к функции одной переменной  .Находим критические точки функции : . На  x = 4 и точки . б) На линии  . Функция  сводится к функции , . Находим критические точки функции : , , , , . На   и получаем точки , .

3) Вершины ломаной в точках  и . 4) Вычисляем значения функции f в точках  , , , . Итак, , .#

 

Формула Тейлора для функции 2-х переменных.

 Если функция  дифференцируема n+1 раз в некоторой окрестности  точки , то для всякой точки  справедлива формула Тейлора

  

или, записав несколько членов в развернутом виде,

+  (7.4)

…+

. Здесь - остаточный член в формуле Тейлора порядка n. При этом  ,где - бесконечно малая функция при   и , вид которой зависит от функции f и точки . В форме Пеано , где . При  формула (7.4) называется формулой Маклорена.

Пример 18. Функцию  разложить по формуле Тейлора в окрестности точки(2,-1).

 Ñ Имеем . Вычислим последовательно частные производные данной функции: ,

. Все последующие производные тождественно равны нулю. Значения производных в точке(2,-1):
. По формуле (7.4) получаем искомое разложение

.#

Пример 19. Функцию  разложить по формуле Тейлора в окрестности точки (1;1) до членов второго порядка включительно.

Ñ Имеем . В соответствии с формулой (7.4) вычислим производные 1-го и 2-го порядков данной функции и их значения в точке (1,1).

,,

   . По формуле (7.4) имеем , где . #

Машиностроительное черчение выполнение четежей