Решение контрольной работы по математике. Примеры решения задач

Математика
Примеры решения задач по математике
Интегральное исчесление
Аналитическая геометрия
Введение в анализ
Задача Коши
Общее решение уравнения теплопроводности
Оценка погрешности и точность вычислений
Элементы линейной алгебры
Примеры решения типовых задач: матрицы
Примеры решения типовых задач:
уравнение плоскости
Решение контрольной работы по
математике
Функция нескольких переменных
Вычислим матрицу
Функции нескольких переменных
Предел функции
Решение примерного варианта контрольной работы
Пример.  Найти производные
Формула Остроградского-Гаусса.
Дивергенция векторного поля
Ротор (вихрь) векторного поля
Поверхностные интегралы второго рода
Локальные максимумы и минимумы ФНП
Вычисление двойного интеграла
Замена переменных в двойном интеграле
Вычислить повторный интеграл
Вычислить определенный интеграл
Криволинейные интегралы первого рода
Криволинейные интегралы второго рода
Поверхностные интегралы
Вычисление тройного интеграла
Объем тела вращения
Вычисление площади поверхности вращения
Вычисление площадей плоских фигур
Вычисление статических моментов
Замена переменных в тройном интеграле
Кратные интегралы
Интегральное исчисление в экономике
Вычисление длины дуги плоской кривой
Дифференциальные уравнения
Дифференцируемость функции
Предел функции
Вычислить криволинейный интеграл
Исследовать ряд на сходимость
Разложение в ряд Фурье
Найти область сходимости функционального ряда
Информатика
Информационная безопасность
Инженерная графика
Машиностроительное черчение
Сборочный чертеж
Системы автоматизированного
проектирования (САПР)
Физика
Примеры решения задач по физике

Механика твердого тела

Основы термодинамики
Электрические токи в металлах, вакууме и газах
Механические и электромагнитные колебания
Элементы электронной оптики
Элементы физики твердого тела

Элементы физики атомного ядра

Мировая энергетика и ядерные технологии
Источники энергии
Электротехника и электроника
Примеры решения задач по ТОЭ
Методы расчета электрических цепей
Законы Ома и Кирхгофа
Расчет переходного процесса
Использование программы Mathcad
Трехфазный асинхронный электродвигатель

Экстремум функции 2-х переменных

 Пусть  - внутренняя точка области определения функции . Точка  называется точкой минимума (максимума) функции f, если существует такая окрестность  точки , что для любой точки  выполняется  .

Точка  называется точкой экстремума функции f, если она является точкой минимума или точкой максимума этой функции.

Теорема 9.7. (Необходимое условие экстремума.) Если - точка экстремума функции, то каждая частная производная  и  либо равна нулю, либо не существует.

 Точка  называется критической точкой функции f, если в ней выполняются необходимые условия экстремума функции f.

Теорема 9.8. (Достаточные условия экстремума.) Пусть: а) - критическая точка функции f, б) существуют и непрерывны производные  в точках  и , в) .Тогда: 1) если  и  , то - точка минимума функции f ; 2) если  и  , то - точка максимума функции f ; 3) если , то не является точкой экстремума; 4) если , то требуется дополнительное исследование.
Отметим, что в случае  существуют такие две прямые, проходящие через точку , что при движении точки M по первой из этих прямых значения функции  сначала уменьшаются, затем возрастают. При движении точки М по другой прямой значения функции сначала возрастают, в точке достигают максимума, затем уменьшаются. В этом случае точку  называют седловой.

Пример 16. Исследовать на экстремум функцию .

Ñ Из необходимого условия экстремума функции (теорема 9.7) имеем систему  решая которую получаем критические точки  . Определим характер критических точек по достаточным условиям экстремума. Находим  . В точке : , , . Следовательно, - седловая точка. В точке :  , , поэтому - точка минимума функции z; .

Машиностроительное черчение выполнение четежей