Решение контрольной работы по математике. Примеры решения задач типового расчета

Математика
Примеры решения задач по математике
Интегральное исчесление
Аналитическая геометрия
Введение в анализ
Задача Коши
Общее решение уравнения теплопроводности
Оценка погрешности и точность вычислений
Элементы линейной алгебры
Примеры решения типовых задач: матрицы
Примеры решения типовых задач:
уравнение плоскости
Решение контрольной работы по
математике
Функция нескольких переменных
Вычислим матрицу
Функции нескольких переменных
Предел функции
Решение примерного варианта контрольной работы
Пример.  Найти производные
Формула Остроградского-Гаусса.
Дивергенция векторного поля
Ротор (вихрь) векторного поля
Поверхностные интегралы второго рода
Локальные максимумы и минимумы ФНП
Вычисление двойного интеграла
Замена переменных в двойном интеграле
Вычислить повторный интеграл
Вычислить определенный интеграл
Криволинейные интегралы первого рода
Криволинейные интегралы второго рода
Поверхностные интегралы
Вычисление тройного интеграла
Объем тела вращения
Вычисление площади поверхности вращения
Вычисление площадей плоских фигур
Вычисление статических моментов
Замена переменных в тройном интеграле
Кратные интегралы
Интегральное исчисление в экономике
Вычисление длины дуги плоской кривой
Дифференциальные уравнения
Дифференцируемость функции
Предел функции
Вычислить криволинейный интеграл
Исследовать ряд на сходимость
Разложение в ряд Фурье
Найти область сходимости функционального ряда
Информатика
Информационная безопасность
Инженерная графика
Машиностроительное черчение
Сборочный чертеж
Системы автоматизированного
проектирования (САПР)
Физика
Примеры решения задач по физике

Механика твердого тела

Основы термодинамики
Электрические токи в металлах, вакууме и газах
Механические и электромагнитные колебания
Элементы электронной оптики
Элементы физики твердого тела

Элементы физики атомного ядра

Мировая энергетика и ядерные технологии
Источники энергии
Электротехника и электроника
Примеры решения задач по ТОЭ
Методы расчета электрических цепей
Законы Ома и Кирхгофа
Расчет переходного процесса
Использование программы Mathcad
Трехфазный асинхронный электродвигатель

 

Задача 5. Поверхность задана уравнением z =  + xy – 5x3. Составить уравнения касательной плоскости и нормали к поверхности σ в точке М0(x0, y0, z0), принадлежащей ей, если x0 = –1, y0 = 2.

Решение.

Уравнения касательной плоскости и нормали к поверхности σ получим, используя формулы (5) и (6). Найдем частные производные функции

z = f (x, y) =  + xy – 5x3:

(x, y) = ( + xy – 5x3) = –  + y – 15x2;

(x, y) = ( + xy – 5x3) =  + x.

Точка М0(x0, y0, z0) принадлежит поверхности σ, поэтому можно вычислить z0, подставив заданные x0 = –1 и y0 = 2 в уравнение поверхности:

z =   + xy – 5x3  z0 =  + (–1) 2 – 5 (–1)3 = 1.

Вычисляем значения частных производных в точке М0(–1, 2, 1):

(М0) = – + 2 – 15(–1)2 = –15; (М0) =  – 1 = –2.

Пользуясь формулой (5), получаем уравнение касательной плоскости к поверхности σ в точке М0:

z – 1= –15(x + 1) – 2(y – 2)  15x + 2y + z + 10 = 0.

Пользуясь формулой (6), получаем канонические уравнения нормали к поверхности σ в точке М0:  =  = .

Ответы: уравнение касательной плоскости: 15x + 2y + z + 10 = 0; уравнения нормали:   =  = .

Задача 6. Дано плоское скалярное поле U = x2 –2y, точка М0(1,–1) и вектор . Требуется:

1) найти уравнения линий уровня поля;

2) найти градиент поля в точке M0 и производную  в точке M0 по направлению вектора ;

3) построить в системе координат xОy 4-5 линий уровня, в том числе линию уровня, проходящую через точку M0, изобразить вектор  на этом чертеже.

Решение.

1) Для U = x2 – 2y уравнение семейства линий уровня имеет вид

x2 – 2y = С или y =  – , где С – произвольная постоянная. Это семейство парабол, симметричных относительно оси Oy (ветви направлены вверх) с вершинами в точках (0, – ).

Найдем частные производные функции U = x2 – 2y:

  = (x2 – 2y) = 2x,  = (x2 – 2y) = – 2.

В точке М0(1,–1) значения частных производных:, .

По формуле (7) находим градиент поля в точке M0:

.

Прежде, чем найти производную по направлению вектора = = {2; – 1}, вычислим его модуль и направляющие косинусы:

, .

Производную поля по направлению вектора  в точке М0 вычисляем

по формуле (8): .

3) Для построения линий уровня в системе координат xОy подставим в уравнение семейства линий уровня y =  –  различные значения С:

при С = 0 получим y = – уравнение линии уровня, соответствующей значению U = 0;

при С = –2 получим y =  + 1 (для U = –2);

при С = 2 получим y =  – 1 (для U = 2);

при С = – 4 получим y =  + 2, и т.д.

Получим уравнение линии уровня, проходящей через точку М0(1,–1). Для этого вычислим значение функции U в этой точке: .

Построим эти линии в системе координат xОy (рис. 10).

Для построения градиента поля в точке M0 нужно отложить от точки М0 проекции градиента в направлениях координатных осей и построить вектор   по правилу параллелограмма.

В данном случае , поэтому откладываем от точки М0(1,– 1) две единицы вдоль оси Ox, две единицы в направлении, противоположном оси Oy и получаем вектор  как диагональ параллелограмма, построенного на векторах  и  (рис. 10).

Ответы: 1) x2 – 2y = С; 2) , ;

3) линии уровня и  на рисунке 10.

Машиностроительное черчение выполнение четежей