Решение контрольной работы по математике. Примеры решения задач

Математика
Примеры решения задач по математике
Интегральное исчесление
Аналитическая геометрия
Введение в анализ
Задача Коши
Общее решение уравнения теплопроводности
Оценка погрешности и точность вычислений
Элементы линейной алгебры
Примеры решения типовых задач: матрицы
Примеры решения типовых задач:
уравнение плоскости
Решение контрольной работы по
математике
Функция нескольких переменных
Вычислим матрицу
Функции нескольких переменных
Предел функции
Решение примерного варианта контрольной работы
Пример.  Найти производные
Формула Остроградского-Гаусса.
Дивергенция векторного поля
Ротор (вихрь) векторного поля
Поверхностные интегралы второго рода
Локальные максимумы и минимумы ФНП
Вычисление двойного интеграла
Замена переменных в двойном интеграле
Вычислить повторный интеграл
Вычислить определенный интеграл
Криволинейные интегралы первого рода
Криволинейные интегралы второго рода
Поверхностные интегралы
Вычисление тройного интеграла
Объем тела вращения
Вычисление площади поверхности вращения
Вычисление площадей плоских фигур
Вычисление статических моментов
Замена переменных в тройном интеграле
Кратные интегралы
Интегральное исчисление в экономике
Вычисление длины дуги плоской кривой
Дифференциальные уравнения
Дифференцируемость функции
Предел функции
Вычислить криволинейный интеграл
Исследовать ряд на сходимость
Разложение в ряд Фурье
Найти область сходимости функционального ряда
Информатика
Информационная безопасность
Инженерная графика
Машиностроительное черчение
Сборочный чертеж
Системы автоматизированного
проектирования (САПР)
Физика
Примеры решения задач по физике

Механика твердого тела

Основы термодинамики
Электрические токи в металлах, вакууме и газах
Механические и электромагнитные колебания
Элементы электронной оптики
Элементы физики твердого тела

Элементы физики атомного ядра

Мировая энергетика и ядерные технологии
Источники энергии
Электротехника и электроника
Примеры решения задач по ТОЭ
Методы расчета электрических цепей
Законы Ома и Кирхгофа
Расчет переходного процесса
Использование программы Mathcad
Трехфазный асинхронный электродвигатель

Способы вычисления потока

Метод проектирования. Пусть поверхность (S) задана явным уравнением . В этом случае орт   и . Для потока П получим формулу:

  . (1.4)

Замечание 1. При проектировании на другие плоскости в подынтегральную функцию в формуле (1.4) следует добавить (множителем) проекцию   на координатную ось, перпендикулярную плоскости проектирования.

В формуле (1.4) () – область на плоскости Oxy, в которую проектируется поверхность (S); произведение dxdy берется со знаком +, если угол   между осью Oz и нормалью  острый, и минус, если угол  тупой. Символ  означает, что в подынтегральную функцию вместо z надо подставить .

Замечание 2. Аналогичные формулы можно записать, если проектировать поверхность (S) на плоскости Oxz или Oyz.

Замечание 3. В случае неявного задания поверхности (S)  вектор .

Пример 1. Найти поток векторного поля  через верхнюю сторону треугольника АВС с вершинами в точках , ,  (см. рис.2).

Рис.2.

 
Решение. Составим уравнение плоскости (поверхности (S)), проходящей через три заданные точки:

,

откуда . Поверхность (S) проектируется на плоскость Oxy в область , . Из условия следует, что нормаль  образует острый угол с осью Oz. Имеем  =; произведение dxdy , берем со знаком “+”. Тогда по формуле (1.4)

.

Пример 2. Вычислить поля  через замкнутую поверхность (S), ограниченную цилиндром  и плоскостями , . Положительной стороной (по определению) считаем внешнюю сторону замкнутой поверхности.

Решение. Поверхность (S) кусочно гладкая. Разобъем ее на три части
(см. рис.3): . В связи с этим . 1 )Для поверхности  z=0 и .

Рис.3.

 
Тогда . Проекция  поверхности (S) на плоскость Oxy есть полукруг , . С учетом направления нормали  для потока  получим: . Переходя к полярным координатам, найдем .2) Для   и . Поверхность  проектируется на плоскость Oxy в область () (см.п.1), и поток

=.3)Для ,

 и = . Однозначно поверхность проектируется на плоскость Oyz в область (), ограниченную линиями  .

Исключая отсюда x, найдем проекцию этой линии на плоскость Oyz:   . Для потока получим (напомним Замечание 1: следует учесть, что в этом случае

 =. 4) Для потока  получим .

2°. Метод проектирования на все три координатные плоскости. Пусть поверхность (S) однозначно проектируется на все три координатные плоскости: (Dxy): z=z(x,y); ; .Для потока П в этом случае имеем (вторая формула из (1.3)):

  (1.5)

В (1.5) знаки проекций dydz, dxdz, dxdy выбираются в соответствии с сформулированным выше правилом.

Пример 3. Найти поток вектора  через часть внешней стороны сферы , заключенной в первом октанте.

Решение. Имеем . С учетом того, что поверхность расположена в первом октанте, проекции dydz, dxdz, dxdy берем со знаком “+”. По формуле (1.5) . Из уравнения сферы имеем: ; ;  и

. Очевидно, . Вычислим этот интеграл в полярной системе координат:  ===. Следовательно, .

3°. Применение формулы Гаусса-Остроградского. Приведем соответствующую теорему.

Теорема. Если в некоторой области  проекции поля  непрерывны и имеют непрерывные частные производные , то поток вектора  через произвольную замкнутую кусочно гладкую поверхность (S), расположенную целиком в области , равен тройному интегралу от суммы  по области (V), ограниченной поверхностью (S):

  (1.6)

- формула Гаусса-Остроградского.

 Замечание. Подынтегральная функция в тройном интеграле (1.6) называется дивергенцией (расходимостью) поля ; обозначается .

Пример 4. Вычислить поток вектора через замкнутую поверхность , .

Решение. По формуле (1.6) . Для вычисления этого интеграла применим сферическую систему координат: , , ; . Таким образом,

 .

Пример 5. Используя формулу Гаусса-Остроградского (1.6), вычислить поток поля  через верхнюю сторону части поверхности , расположенную над плоскостью Oxy.

Решение. Для того, чтобы можно было применить формулу (1.6), замкнем снизу данную поверхность куском плоскости Oxy, который ограничен окружностью , z = 0 . Вычислим подынтегральную функцию, стоящую под знаком тройного интеграла: . Отсюда следует, что поток П=0. По свойству аддитивности , откуда искомый поток . Уравнение поверхности  и . Таким образом,  - поток  через поверхность z =0 численно равен площади круга ; искомый поток .

Машиностроительное черчение выполнение четежей