Решение контрольной работы по математике. Примеры решения задач

Математика
Примеры решения задач по математике
Интегральное исчесление
Аналитическая геометрия
Введение в анализ
Задача Коши
Общее решение уравнения теплопроводности
Оценка погрешности и точность вычислений
Элементы линейной алгебры
Примеры решения типовых задач: матрицы
Примеры решения типовых задач:
уравнение плоскости
Решение контрольной работы по
математике
Функция нескольких переменных
Вычислим матрицу
Функции нескольких переменных
Предел функции
Решение примерного варианта контрольной работы
Пример.  Найти производные
Формула Остроградского-Гаусса.
Дивергенция векторного поля
Ротор (вихрь) векторного поля
Поверхностные интегралы второго рода
Локальные максимумы и минимумы ФНП
Вычисление двойного интеграла
Замена переменных в двойном интеграле
Вычислить повторный интеграл
Вычислить определенный интеграл
Криволинейные интегралы первого рода
Криволинейные интегралы второго рода
Поверхностные интегралы
Вычисление тройного интеграла
Объем тела вращения
Вычисление площади поверхности вращения
Вычисление площадей плоских фигур
Вычисление статических моментов
Замена переменных в тройном интеграле
Кратные интегралы
Интегральное исчисление в экономике
Вычисление длины дуги плоской кривой
Дифференциальные уравнения
Дифференцируемость функции
Предел функции
Вычислить криволинейный интеграл
Исследовать ряд на сходимость
Разложение в ряд Фурье
Найти область сходимости функционального ряда
Информатика
Информационная безопасность
Инженерная графика
Машиностроительное черчение
Сборочный чертеж
Системы автоматизированного
проектирования (САПР)
Физика
Примеры решения задач по физике

Механика твердого тела

Основы термодинамики
Электрические токи в металлах, вакууме и газах
Механические и электромагнитные колебания
Элементы электронной оптики
Элементы физики твердого тела

Элементы физики атомного ядра

Мировая энергетика и ядерные технологии
Источники энергии
Электротехника и электроника
Примеры решения задач по ТОЭ
Методы расчета электрических цепей
Законы Ома и Кирхгофа
Расчет переходного процесса
Использование программы Mathcad
Трехфазный асинхронный электродвигатель

Линейный интеграл вектора. Циркуляция векторного поля

 Пусть поле - непрерывное векторное поле, (L) – кусочно гладкая кривая с выбранным на ней положительным направлением (ориентированная кривая).

Определение 1. Линейным интегралом (обозначается L) вектора  вдоль ориентированной кривой (L) называется криволинейный интеграл

   (1.7)

Для линейного интеграла справедливы следующие формулы:

  (1.8) 

 =

Если поле  есть силовое поле , то линейный интеграл (1.7) дает величину работы этого поля вдоль линии (L). Вычисление линейного интеграла в зависимости от задачи может быть проведено по одной из формул “списка” (1.8).

Определение 2. Циркуляцией (обозначается Ц) векторного поля  называется линейный интеграл по замкнутой ориентированной кривой (L):

 .  (1.9)

За положительное направление обхода замкнутой кривой (L) берется то, при котором область, ограниченная кривой, лежит под левой рукой.

Пример 1. Найти линейный интеграл вектора  вдоль дуги (L) винтовой линии   от точки A пересечения линии с плоскостью z=0 до точки В пересечения с плоскостью z =1.

Решение. Имеем по последней формуле из списка (1.8):  . Точке A соответствует значение параметра t =0, точке B – значение  и, таким образом,    .

Пример 2. Вычислить работу силового поля  вдоль отрезка  прямой, проходящей через точки   и .

Решение. Работа .

Запишем канонические уравнения прямой .
Отсюда ; параметры . Вычислим работу:
.

Пример 3. Вычислить циркуляцию поля  вдоль эллипса .

Решение. Имеем по формуле (1.9) и (1.8): .
Запишем параметрические уравнения эллипса: . Вычисляя dx и dy, получим: - здесь использовано, что  (вычисление этих интегралов проводится с помощью понижения степени подынтегральной функции).

Пример 4. Вычислить циркуляцию векторного поля   вдоль линии L, полученной пересечением конуса  с координатными плоскостями (см. рис.4).

Рис. 4.

 
Решение. Линия L состоит из двух отрезков BC и CA, расположенных на координатных плоскостях Oyz и Oxz соответственно, и дуги  окружности  . Для циркуляции имеем:  .1) На отрезке BC имеем: . Следовательно, . 2) На отрезке CA имеем:   . Следовательно, . 3) На дуге AB окружности  имеем:  и  =. Искомая циркуляция поля равна нулю.

Пример 5. Вычислить циркуляцию векторного поля   вдоль линии , .

Решение. Имеем: . Линия L есть эллипс, получающийся в результате сечения цилиндра  плоскостью . Найдем параметрические уравнения этой линии. Проекция любой точки этой линии на плоскость Oxy находится на окружности . Отсюда, полагая , найдем, что . Для z из уравнения  получим: . Таким образом,   . Находим отсюда:  , и для циркуляции запишем определенный интеграл:  .

Машиностроительное черчение выполнение четежей