Решение контрольной работы по математике. Примеры решения задач типового расчета

Расчет электротехнических цепей Лабораторные работы

 

Формула Остроградского-Гаусса. Дивергенция

Формула Остроградского-Гаусса устанавливает связь между интегралом по замкнутой поверхности σ в направлении ее «внешней» нормали и тройным интегралом по области V, ограниченной этой поверхностью:

.

Пусть   – векторное поле, заданное в области VxOyz . Дивергенцией векторного поля  называется скалярная функция

, (17)

которая характеризует наличие источников (если > 0) и стоков (если < 0), или их отсутствие (если = 0) векторного поля в точке М.

Используя выражения для дивергенции и для потока вектора  через замкнутую поверхность σ, можно записать формулу Остроградского-Гаусса в векторном виде:

,  (18)

т.е. поток вектора  через замкнутую поверхность σ в направлении ее «внешней» нормали (рис. 7) равен тройному интегралу от дивергенции этого поля по области V, ограниченной поверхностью σ.

 

 

 

Потенциальные и соленоидальные векторные поля

Ротор векторного поля

Ротором (вихрем) векторного поля  называется вектор

.

Ротор – это векторная величина, которая является дифференциальной характеристикой векторного поля. Всякое векторное поле  сопровождается другим векторным полем   его роторов.

Для вычисления ротора удобно использовать его запись в форме определителя:

,  (19)

где вектор  – это векторно-дифференциальный оператор, называемый оператором Гамильтона или оператором «набла». При вычислении определителя умножению его элементов  на функции P, Q, R соответствует операция дифференцирования: ,  и т.д.

Машиностроительное черчение выполнение четежей