Основы ядерной физики

Атомная энергетика
Ядерные реакторы
Тепловые контуры атомных станций
Реактор ВВЭР
Кипящие реакторы
Реактор РБМК
Реакторная установка МКЭР -1500
Реакторы на естественном уране
Газоохлаждаемые реакторы
Реакторы HTGR
Атомные электростанции с натриевым
теплоносителем
АЭС с реактором БН-350

БРЕСТ: быстрый реактор брест со
свинцовым теплоносителем

 
Основы ядерной физики
Строение атомного ядра
ЭНЕРГИЯ СВЯЗИ АТОМНЫХ ЯДЕР
И ДЕФЕКТ МАСС
Ядерная реакция
Закон радиоактивного распада
Цепная ядерная реакция
Термоядерный синтез
Реакторы на быстрых нейтрона
Элементарная частица
Позитрон. Аннигиляция
 
Использование атомной энергетики
для решения проблем дефицита пресной воды
Ядерное опреснение
Варианты  плавучего энергоблока и
опреснительных установок
Схема процесса многостадийной
флеш-дистилляции для опреснения воды
Принципиальная гидравлическая схема
энергоопреснительного комплекса
Опыт использования опреснительных установок
в России и регионах мира
 
Проектирование и строительство
атомных энергоблоков
Работы по подготовке технологических решений
объектов атомной энергетики
Состав разделов проектной документации
Разделы проектной документации
Состав проектной документации
Особенности проектирования и конструкций
Проектирование линейных объектов
Техническое обследование зданий
Экспертиза проектной документации
Особенности компоновки АЭС на примере
проектных решений АЭС с ВВЭР-1200
Основным режимом работы АЭС является
работа в базовом режиме на 100 % мощности
Корпус реактора
Привод системы управления и защиты
Компоновка реакторного контура
Паровая турбина
Генеральный план
Здания и сооружения ядерного острова
Концепция безопасности
Радиационная и ядерная безопасность
производства
Социально-экономический аспект
обеспечения безопасности
Радиационная безопасность человека
Государственное нормирование в области
обеспечения радиационной безопасности
Обеспечение защиты населения

Ядерный реактор. Термоядерный синтез.

Итак, перед тем как мы с вами поведем речь, о термоядерных и ядерных реакциях, я предлагаю вам немного проанализировать и сравнить их.

Термоядерная реакция-реакция ядерного синтеза, в которой из более легких элементов(тяжелые изотопы водорода –дейтерий и тритий)образуются белее тяжелые-гелий.

Ядерной же реакцией называют реакцию цепного ядерного распада, в которой из более тяжелых элементов образуются более легкие.

На практике разница состоит еще в том, что реакция ядерного распада сравнительно легко управляется, что нельзя сказать о термоядерной реакции, поэтому кроме военного значения имеет и мирное- атомные электростанции.

Над получением же дешевого способа управления реакцией термоядерного синтеза ученые бьются до сих пор, и пока безрезультатно. Если же говорить про их сходства, то при обеих реакциях выделяется большое количество теплоты, но при термоядерном синтезе все таки больше.

 

 Ядерный реактор tworeactor Ядерный реактор

Ядерный реактор-это установка, содержащая ядерное топливо, в которой осуществляется управляемая цепная реакция деления.

Принцип действия атомного реактора

При распаде урана U235 происходит выделение тепла, сопровождаемое выбросом двух-трех нейтронов. По статистическим данным – 2,5. Эти нейтроны сталкиваются с другими атомами урана U235. При столкновении уран U235 превращается в нестабильный изотоп U236, который практически сразу же распадается на Kr92 и Ba141 + эти самые 2-3 нейтрона. Распад сопровождается выделением энергии в виде гамма излучения и тепла.

Это и называется  цепная реакция. Атомы делятся, количество распадов увеличивается в геометрической прогрессии, что в конечном итоге приводит к молниеносному, по нашим меркам высвобождению огромного количества энергии – происходит атомный взрыв, как последствие неуправляемой цепной реакции.

Ядерные ректоры бывают на быстрых и медленных нейтронах:

Реактор на быстрых нейтронах — ядерный реактор, использующий для поддержания цепной ядерной реакции нейтроны с энергией > 105 эВ. Реакторы существенно различаются по спектру нейтронов — распределению нейтронов по энергиям, а, следовательно, и по спектру поглощаемых (вызывающих деление ядер) нейтронов. Если активная зона не содержит легких ядер, специально предназначенных для замедления в результате упругого рассеяния, то практически всё замедление обусловлено неупругим рассеянием нейтронов на тяжелых и средних по массе ядрах. При этом большая часть делений вызывается нейтронами с энергиями порядка десятков и сотен кэВ. Такие реакторы называются реакторами на быстрых нейтронах.

Реактор на медленных (тепловых) нейтронах — ядерный ректор, использующий для поддержания цепной ядерной реакции нейтроны тепловой части спектра энергии — «теплового спектра» . Использование нейтронов теплового спектра выгодно потому, что сечение взаимодействия ядер урана-235 с нейтронами, участвующих в цепной реакции, растёт по мере снижения энергии нейтронов, а ядер урана-238 остаётся при низких энергиях постоянным. В результате, самоподдерживающаяся реакция при использовании природного урана, в котором делящегося изотопа 235U всего 0,7%, невозможна на быстрых нейтронах (спектра деления) и возможна на медленных (тепловых).

Простые соображения показывают, что деление урана на два осколка должно сопровождаться выделением огромной энергии. Поэтому при делении ядра урана на два осколка должна освобождаться энергия, равная примерно 1,1 МэВ на один нуклон. Всего при делении ядра урана, содержащего более 200 нуклонов, должна выделяться энергия порядка 200 МэВ.

Основная часть энергии деления выделяется в форме кинетической энергии осколков деления и нейтронов. Часть энергии выделяется в виде гамма излучения.

Схема процессов в ядерном реакторе: (при использовании замедлителя реакции)

Основные элементы ядерного реактора:

1) ядерное горючее ( , , и др.);

2) замедлитель нейтронов (тяжелая или обычная вода, бериллий, оксид бериллия и др.);

3) теплоноситель для вывода энергии, образующейся при работе реактора (вода, жидкий натрий и др.);

4) Устройство для регулирования скорости реакции (вводимые в рабочее пространство реактора, стержни, содержащие кадмий или бор – вещества, которые хорошо поглощают нейтроны).

 Снаружи реактор окружают защитной оболочкой, задерживающей γ-излучение и нейтроны. Оболочку выполняют из бетона с железным наполнителем.

Нейтронный захват — вид ядерной реакции, в которой ядро атома соединяется с нейтроном и образует более тяжёлое ядро:

(A, Z) + n → (A+1, Z) + γ.

Нейтрон может приблизиться к ядру даже при околонулевой кинетической энергии, так как является электрически нейтральным, в отличие от положительно заряженного протона, который может быть захвачен лишь при достаточно большой энергии, позволяющей преодолеть электростатическое отталкивание.

Атомная энергетика