Решение контрольной работы по математике. Примеры решения задач

 

Приложения частных производных и дифференциала

Приложение дифференциала к приближенным

вычислениям

Для дифференцируемой функции  при достаточно малом

из формул (5.1) – (5.3) следуетили, что то же самое, 

 . (7.1)

Пример 14. Вычислить приближенно .

Ñ Искомое число будем рассматривать как значение функции  при  и , если . Точка  выбрана из соображений близости ее к точке  и простоты вычисления значений функции f и ее частных производных в точке М. По формуле (7.1) имеем .

Находим  . Следовательно,  » . #

 

Касательная поверхность и нормаль к поверхности

1°. Касательной плоскостью к поверхности в ее точке  (точка касания) называется плоскость, содержащая в себе все касательные к кривым, проведенным на поверхности через эту точку. Уравнение касательной плоскости в точке касания  имеет вид:

а) к поверхности F(x,y,z) = 0:
, (7.2)

б) к поверхности .

2°. Нормалью к поверхности называется прямая, перпендикулярная к касательной плоскости и проходящая через точку касания. Параметрические уравнения нормали в точке касания  имеют вид:

а) к поверхности :

 ; (7.3)

б) к поверхности :

   .

Пример 15. Найти уравнения касательной плоскости и нормали к поверхности  в точке М(2,4,6).

Ñ Обозначив через  левую часть уравнения поверхности, найдем
      По формуле (7.2) имеем уравнение касательной плоскости  или . По формулам (7.3) находим уравнения нормали в параметрической форме , отсюда можно получить канонические уравнения нормали .
#

 

Экстремум функции 2-х переменных

 Пусть  - внутренняя точка области определения функции . Точка  называется точкой минимума (максимума) функции f, если существует такая окрестность  точки , что для любой точки  выполняется  .

Точка  называется точкой экстремума функции f, если она является точкой минимума или точкой максимума этой функции.

Теорема 9.7. (Необходимое условие экстремума.) Если - точка экстремума функции, то каждая частная производная  и  либо равна нулю, либо не существует.

 Точка  называется критической точкой функции f, если в ней выполняются необходимые условия экстремума функции f.

Теорема 9.8. (Достаточные условия экстремума.) Пусть: а) - критическая точка функции f, б) существуют и непрерывны производные  в точках  и , в) .Тогда: 1) если  и  , то - точка минимума функции f ; 2) если  и  , то - точка максимума функции f ; 3) если , то не является точкой экстремума; 4) если , то требуется дополнительное исследование.
Отметим, что в случае  существуют такие две прямые, проходящие через точку , что при движении точки M по первой из этих прямых значения функции  сначала уменьшаются, затем возрастают. При движении точки М по другой прямой значения функции сначала возрастают, в точке достигают максимума, затем уменьшаются. В этом случае точку  называют седловой.

Пример 16. Исследовать на экстремум функцию .

Ñ Из необходимого условия экстремума функции (теорема 9.7) имеем систему  решая которую получаем критические точки  . Определим характер критических точек по достаточным условиям экстремума. Находим  . В точке : , , . Следовательно, - седловая точка. В точке :  , , поэтому - точка минимума функции z; .

Решение контрольной работы по математике. Примеры решения задач типового расчета