Решение контрольной работы по математике. Примеры решения задач типового расчета

Математика
Примеры решения задач по математике
Интегральное исчесление
Аналитическая геометрия
Введение в анализ
Задача Коши
Общее решение уравнения теплопроводности
Оценка погрешности и точность вычислений
Элементы линейной алгебры
Примеры решения типовых задач: матрицы
Примеры решения типовых задач:
уравнение плоскости
Решение контрольной работы по
математике
Функция нескольких переменных
Вычислим матрицу
Функции нескольких переменных
Предел функции
Решение примерного варианта контрольной работы
Пример.  Найти производные
Формула Остроградского-Гаусса.
Дивергенция векторного поля
Ротор (вихрь) векторного поля
Поверхностные интегралы второго рода
Локальные максимумы и минимумы ФНП
Вычисление двойного интеграла
Замена переменных в двойном интеграле
Вычислить повторный интеграл
Вычислить определенный интеграл
Криволинейные интегралы первого рода
Криволинейные интегралы второго рода
Поверхностные интегралы
Вычисление тройного интеграла
Объем тела вращения
Вычисление площади поверхности вращения
Вычисление площадей плоских фигур
Вычисление статических моментов
Замена переменных в тройном интеграле
Кратные интегралы
Интегральное исчисление в экономике
Вычисление длины дуги плоской кривой
Дифференциальные уравнения
Дифференцируемость функции
Предел функции
Вычислить криволинейный интеграл
Исследовать ряд на сходимость
Разложение в ряд Фурье
Найти область сходимости функционального ряда
Информатика
Информационная безопасность
Инженерная графика
Машиностроительное черчение
Сборочный чертеж
Системы автоматизированного
проектирования (САПР)
Физика
Примеры решения задач по физике

Механика твердого тела

Основы термодинамики
Электрические токи в металлах, вакууме и газах
Механические и электромагнитные колебания
Элементы электронной оптики
Элементы физики твердого тела

Элементы физики атомного ядра

Мировая энергетика и ядерные технологии
Источники энергии
Электротехника и электроника
Примеры решения задач по ТОЭ
Методы расчета электрических цепей
Законы Ома и Кирхгофа
Расчет переходного процесса
Использование программы Mathcad
Трехфазный асинхронный электродвигатель

 

Теорема существования и единственности решения дифференциального уравнения

Условие Липшица

Рассмотрим функцию , определенную и непрерывную в прямоугольнике К:

Определение. Если для любого  и любых двух значений  и  переменной :

, существует такое, не зависящее от х число , что выполнено неравенство:  (1), то говорят, что функция  в области К удовлетворяет условию Липшица с постоянной L.

Замечания:

1. Если  в области К имеет непрерывную частную производную , то всегда найдется такое L, что условие (1) будет выполнено. Действительно, тогда по формуле Лагранжа  (2),

– лежит между   и .

В силу непрерывности  в К и замкнутости области К,  в К ограничена, т.е. , где L – некоторая константа. В этом случае, в частности, за L можно принять .

2. Условие Липшица (1) более слабое, чем существование частной производной , так как оно может быть выполнено и в том случае, когда  существует не всюду в К.

Примеры:

Определить, удовлетворяет ли условию Липшица функция  заданная в прямоугольнике ?

 


Решение.

 

Следовательно, за L можно принять  и условие Липшица выполнено. Тот же результат получим, если используем замечание 1. Действительно, функция  имеет непрерывную , поэтому за L можно принять .

Таким образом, заданная функция удовлетворяет условию Липшица в любом конечном прямоугольнике.

То же самое для функции .

Это значит, что в прямоугольнике K условие выполнено с .

Здесь константа L не зависит от размеров прямоугольника, следовательно, условие Липшица удовлетворяется на всей плоскости.

То же для функции

В то же время  не существует при , т.к.

.

Теорема существования и единственности

Теорема (Коши)

Пусть  удовлетворяет условиям:

1) непрерывна в прямоугольнике K: , тогда в K  ограничена, то найдется такое   (3)

удовлетворяет в K условию Липшица

 (4)


Тогда в интервале:   (5)

дифференциальное уравнение  (6)

обладает единственным решением , таким, что .

Замечания:

Для существования решения достаточно непрерывности  в K.

Для единственности решения требуется выполнение условия Липшица (4), которое может быть заменено более жестким условием существования в K непрерывной .

При доказательстве теоремы рассматривается задача Коши: , (7)

которая заменяется эквивалентным ей интегральным уравнением . (8)

Затем к уравнению (8) применяется так называемый метод последовательных приближений Пикара. Он состоит в том, что строится последовательность функций  сходящаяся к решению уравнения (8). Функции  строятся по следующему правилу: за исходное приближение принимается , а следующие вычисляются по формуле: . (9)

Это есть рабочая формула для построения приближенного решения по методу последовательных приближений.

Допустим интегральная кривая построена на интервале . Возьмем конечную точку за центр нового прямоугольника и продолжим решение вправо. Поступая так, каждый раз, можно продолжить решение (интегральную кривую) до самой границы области G задания функции   (в предположении, что G конечна и замкнута).

Мы построили интегральную кривую, проходящую через точку . Можно выбрать любую другую точку и опять получим единственную интегральную кривую. Таким образом, область G как бы состоит из интегральных кривых.

Теорема. Если  определена и непрерывна на всей плоскости и удовлетворяет условию Липшица во всякой конечной области этой плоскости, то всякая интегральная кривая при возрастании или продолжима до  или имеет вертикальную асимптоту при конечном значении , т.е. интегральная кривая не может окончится где-то внутри области.

Пример. .

Здесь  удовлетворяет всем условиям теоремы. Решением задачи Коши  будет . Решение имеет вертикальные асимптоты .

Те точки области G, в которых функция  неопределена или перестает быть непрерывной или не выполняется условие Липшица, называются особыми точками уравнения . Таким образом, особые точки это те точки, в которых нарушаются условия теоремы существования и единственности. Особые точки могут быть изолированными, а могут составлять и целые области.

 

Машиностроительное черчение выполнение четежей