Решение контрольной работы по математике. Примеры решения задач

Математика
Примеры решения задач по математике
Интегральное исчесление
Аналитическая геометрия
Введение в анализ
Задача Коши
Общее решение уравнения теплопроводности
Оценка погрешности и точность вычислений
Элементы линейной алгебры
Примеры решения типовых задач: матрицы
Примеры решения типовых задач:
уравнение плоскости
Решение контрольной работы по
математике
Функция нескольких переменных
Вычислим матрицу
Функции нескольких переменных
Предел функции
Решение примерного варианта контрольной работы
Пример.  Найти производные
Формула Остроградского-Гаусса.
Дивергенция векторного поля
Ротор (вихрь) векторного поля
Поверхностные интегралы второго рода
Локальные максимумы и минимумы ФНП
Вычисление двойного интеграла
Замена переменных в двойном интеграле
Вычислить повторный интеграл
Вычислить определенный интеграл
Криволинейные интегралы первого рода
Криволинейные интегралы второго рода
Поверхностные интегралы
Вычисление тройного интеграла
Объем тела вращения
Вычисление площади поверхности вращения
Вычисление площадей плоских фигур
Вычисление статических моментов
Замена переменных в тройном интеграле
Кратные интегралы
Интегральное исчисление в экономике
Вычисление длины дуги плоской кривой
Дифференциальные уравнения
Дифференцируемость функции
Предел функции
Вычислить криволинейный интеграл
Исследовать ряд на сходимость
Разложение в ряд Фурье
Найти область сходимости функционального ряда
Информатика
Информационная безопасность
Инженерная графика
Машиностроительное черчение
Сборочный чертеж
Системы автоматизированного
проектирования (САПР)
Физика
Примеры решения задач по физике

Механика твердого тела

Основы термодинамики
Электрические токи в металлах, вакууме и газах
Механические и электромагнитные колебания
Элементы электронной оптики
Элементы физики твердого тела

Элементы физики атомного ядра

Мировая энергетика и ядерные технологии
Источники энергии
Электротехника и электроника
Примеры решения задач по ТОЭ
Методы расчета электрических цепей
Законы Ома и Кирхгофа
Расчет переходного процесса
Использование программы Mathcad
Трехфазный асинхронный электродвигатель

 

ЗАДАНИЕ №7

Следующие три задачи относятся только к студентам специальности ЭВМ.

Задача №7: Привести квадратичную форму  к каноническому виду; найти ортонормированный базис, в котором матрица квадратичной формы имеет диагональный вид; найти матрицу перехода к ортонормированному базису.

Квадратичной формой действительных переменных называется многочлен второй степени относительно этих переменных, не содержащий свободного члена и членов первой степени. Если  - квадратичная форма переменных , а λ – какое-то действительное число, то .

Если n=2, то .

Матрица

у которой , называется матрицей квадратичной формы .

Т.к. А – симметричная матрица, то корни λ1 и λ2 характеристического уравнения

являются действительными числами.

Пусть  и

 

нормированные собственные векторы, соответствующие характеристическим числам λ1 и λ2 в ортонормированном базисе . В свою очередь векторы  образуют ортонормированный базис. Матрица

Является матрицей перехода от базиса  к базису . Формулы преобразования координат при переходе к новому ортонормированному базису имеют вид:

Преобразовав с помощью этих формул квадратичную форму , (не содержащую членов с произведениями).

говорят, что форма приведена к каноническому виду.

Пример 1. Приведем к каноническому виду квадратичную форму .

; ; .

Составим характеристическое уравнение

=0 или .

; .

Определим собственные векторы

I)

;

Полагая что , получим , то есть собственный вектор .

II).

Полагая что , получим , то есть собственный вектор .

Чтобы нормировать векторы u и v, следует принять .

Итак, мы нашли нормированные собственные векторы

где  - ортонормированный базис, в котором матрица квадратичной формы имеет диагональный вид.

Матрица перехода от ортонормированного базиса  к ортонормированному базису  имеет вид:

B=

Канонический вид квадратичной формы

Решите эту задачу самостоятельно:

Задача 7.1. Приведите к каноническому виду квадратичную форму

Машиностроительное черчение выполнение четежей