Решение контрольной работы по математике. Примеры решения задач

Математика
Примеры решения задач по математике
Интегральное исчесление
Аналитическая геометрия
Введение в анализ
Задача Коши
Общее решение уравнения теплопроводности
Оценка погрешности и точность вычислений
Элементы линейной алгебры
Примеры решения типовых задач: матрицы
Примеры решения типовых задач:
уравнение плоскости
Решение контрольной работы по
математике
Функция нескольких переменных
Вычислим матрицу
Функции нескольких переменных
Предел функции
Решение примерного варианта контрольной работы
Пример.  Найти производные
Формула Остроградского-Гаусса.
Дивергенция векторного поля
Ротор (вихрь) векторного поля
Поверхностные интегралы второго рода
Локальные максимумы и минимумы ФНП
Вычисление двойного интеграла
Замена переменных в двойном интеграле
Вычислить повторный интеграл
Вычислить определенный интеграл
Криволинейные интегралы первого рода
Криволинейные интегралы второго рода
Поверхностные интегралы
Вычисление тройного интеграла
Объем тела вращения
Вычисление площади поверхности вращения
Вычисление площадей плоских фигур
Вычисление статических моментов
Замена переменных в тройном интеграле
Кратные интегралы
Интегральное исчисление в экономике
Вычисление длины дуги плоской кривой
Дифференциальные уравнения
Дифференцируемость функции
Предел функции
Вычислить криволинейный интеграл
Исследовать ряд на сходимость
Разложение в ряд Фурье
Найти область сходимости функционального ряда
Информатика
Информационная безопасность
Инженерная графика
Машиностроительное черчение
Сборочный чертеж
Системы автоматизированного
проектирования (САПР)
Физика
Примеры решения задач по физике

Механика твердого тела

Основы термодинамики
Электрические токи в металлах, вакууме и газах
Механические и электромагнитные колебания
Элементы электронной оптики
Элементы физики твердого тела

Элементы физики атомного ядра

Мировая энергетика и ядерные технологии
Источники энергии
Электротехника и электроника
Примеры решения задач по ТОЭ
Методы расчета электрических цепей
Законы Ома и Кирхгофа
Расчет переходного процесса
Использование программы Mathcad
Трехфазный асинхронный электродвигатель

 

Плоскость и прямая в пространстве.

Рассмотрим произвольную плоскость и на ней вектор-нормаль , то есть вектор, перпендикулярный плоскости и фиксированную точку .Возьмем текущую точку ,координаты которой меняются так, что точка  остается в плоскости, таким образом вектор  также всегда, при любых движениях точки  лежит в плоскости.

Итак, вектор  лежит в плоскости, а вектор ей перпендикулярен. Тогда их скалярное произведение равно нулю:

, или , где

Это общее уравнение плоскости.

Если , то разделив все члены уравнения на  получим уравнение плоскости в отрезках

.

абсцисса, ордината и аппликата точек пересечения плоскости с осями

Рассмотрим три заданные точки в пространстве ,  и .

Как известно, три точки определяют плоскость. Введём текущую точку , координаты которой меняются, но она не выходит за рамки плоскости. Рассмотри три вектора Все они лежат в плоскости , то есть они компланарны и их смешанное произведение равно нулю.

Это уравнение плоскости, проходящей через три заданные точки.

Рассмотрим в пространстве прямую. Её можно задать, задав фиксированную точку, через которую она проходит и задав её направление при помощи вектора.

Итак, напишем уравнение прямой, проходящей через заданную точку   и параллельной направляющему вектору . Опять возьмем текущую точку на прямой, т.е. точку, координаты которой меняются так, чтобы она не вышла за пределы этой прямой . Вектор лежит на прямой и, значит, коллинеарен вектору .

Если вектора коллинеарны, то их координаты пропорциональны.

 - это и есть канонические уравнения прямой в пространстве.

Обозначим отношение 

 за

Это параметрические уравнения прямой.

Более подробно этот материал можно найти в , главы 1 и 2; в  §1,2,5,6,9,10,12,13; в  главы 1,2,3 можно найти похожие задачи.

Пример 1. Задана пирамида с вершинами ,,,.

Зная координаты начала и конца вектора , мы можем найти его координаты:

 или

 Аналогично найдем 

 

1. Теперь найдем угол между ребром  и гранью .

Вообще говоря, найти угол между прямой и плоскостью, а угол  как раз и является углом между прямой  и плоскостью ,- это угол между прямой и её проекцией на плоскость- задача непростая. Угол найти проще, а ведь в сумме они составляют .

Значит, найдя , найдем и =-.

Итак, ищем : это угол между вектором-нормалью к плоскости и вектором .

Отыщем сначала . Какой вектор мы можем выбрать в качестве перпендикуляра к плоскости ? Векторное произведение любых двух векторов, лежащих в плоскости, перпендикулярно плоскости. Возьмем векторное произведение .

==

=

Нас интересует угол между =и .

Скалярное произведение

следовательно

Если , то

- угол между ребром пирамиды и гранью.

Машиностроительное черчение выполнение четежей