Решение контрольной работы по математике. Примеры решения задач типового расчета

Математика
Примеры решения задач по математике
Интегральное исчесление
Аналитическая геометрия
Введение в анализ
Задача Коши
Общее решение уравнения теплопроводности
Оценка погрешности и точность вычислений
Элементы линейной алгебры
Примеры решения типовых задач: матрицы
Примеры решения типовых задач:
уравнение плоскости
Решение контрольной работы по
математике
Функция нескольких переменных
Вычислим матрицу
Функции нескольких переменных
Предел функции
Решение примерного варианта контрольной работы
Пример.  Найти производные
Формула Остроградского-Гаусса.
Дивергенция векторного поля
Ротор (вихрь) векторного поля
Поверхностные интегралы второго рода
Локальные максимумы и минимумы ФНП
Вычисление двойного интеграла
Замена переменных в двойном интеграле
Вычислить повторный интеграл
Вычислить определенный интеграл
Криволинейные интегралы первого рода
Криволинейные интегралы второго рода
Поверхностные интегралы
Вычисление тройного интеграла
Объем тела вращения
Вычисление площади поверхности вращения
Вычисление площадей плоских фигур
Вычисление статических моментов
Замена переменных в тройном интеграле
Кратные интегралы
Интегральное исчисление в экономике
Вычисление длины дуги плоской кривой
Дифференциальные уравнения
Дифференцируемость функции
Предел функции
Вычислить криволинейный интеграл
Исследовать ряд на сходимость
Разложение в ряд Фурье
Найти область сходимости функционального ряда
Информатика
Информационная безопасность
Инженерная графика
Машиностроительное черчение
Сборочный чертеж
Системы автоматизированного
проектирования (САПР)
Физика
Примеры решения задач по физике

Механика твердого тела

Основы термодинамики
Электрические токи в металлах, вакууме и газах
Механические и электромагнитные колебания
Элементы электронной оптики
Элементы физики твердого тела

Элементы физики атомного ядра

Мировая энергетика и ядерные технологии
Источники энергии
Электротехника и электроника
Примеры решения задач по ТОЭ
Методы расчета электрических цепей
Законы Ома и Кирхгофа
Расчет переходного процесса
Использование программы Mathcad
Трехфазный асинхронный электродвигатель

ЗАДАНИЕ №24

Следующая задача относится к вычислению тройного интеграла

 Тройным интегралом от функции  по области Ư называется предел интегральной суммы при условии, что

, где d- диаметр частичной области разбиения

 Для непрерывной в области U функции этот предел существует и не зависит от способа разбиения области U на элементарные и от выбора точек Рк (теорема о существовании тройного интеграла).

 Если  в области U, то тройной интеграл  физически есть масса тела, занимающего область U и имеющего переменную плотность

 В частности, если , то тройной интеграл определяет объем области U,т.е.

dU – элемент объёма.

 Основные свойства тройных интегралов аналогичны свойствам двойных интегралов.

 В декартовых координатах тройной интеграл обычно записывают в виде:

Вычисление тройного интеграла

 Пусть область интегрирования U определяется неравенствами:

Где y1(x), y2(x), z1( x, y), z2(x, y) – непрерывные функции. Тогда тройной интеграл от функции  по области U вычисляется по формуле:

 Интеграл стоящий в правой части формулы называется трехкратным. Он принципиально мало чем отличается от двукратного, добавляется лишь интегрирование еще по одной переменной.

Пример 1. Вычислить с помощью тройного интеграла объём тела, ограниченного

 поверхностями

z=0, z=4-y2, x2=2y.

 Решение: Данное тело ограничено сверху цилиндрической поверхностью z=4-y2 с образующими, параллельными оси ОХ, снизу плоскостью z=0 ( координатная плоскость ХОУ ).

 

 Эти поверхности

 пересекаются по

 прямым:

 у = -2 и у = +2

 Тело U ограничено также цилиндрической поверхностью x2=2y с образующими, параллельными оси OZ

  

 Поверхности, пересекаясь, образуют замкнутое тело, которое проецируется в область Д

плоскости ХОУ

   

 Для вычисления объёма воспользуемся формулами. Пределы интегрирования по Х и У расставятся в соответствии с областью Д (как в двухкратном интеграле), а пределами интегрирования по Z будут:

Получим 

Ответ:

Овощные ящики по материалам www.plastic-system.ru.
Машиностроительное черчение выполнение четежей