Решение контрольной работы по математике. Примеры решения задач типового расчета

Математика
Примеры решения задач по математике
Интегральное исчесление
Аналитическая геометрия
Введение в анализ
Задача Коши
Общее решение уравнения теплопроводности
Оценка погрешности и точность вычислений
Элементы линейной алгебры
Примеры решения типовых задач: матрицы
Примеры решения типовых задач:
уравнение плоскости
Решение контрольной работы по
математике
Функция нескольких переменных
Вычислим матрицу
Функции нескольких переменных
Предел функции
Решение примерного варианта контрольной работы
Пример.  Найти производные
Формула Остроградского-Гаусса.
Дивергенция векторного поля
Ротор (вихрь) векторного поля
Поверхностные интегралы второго рода
Локальные максимумы и минимумы ФНП
Вычисление двойного интеграла
Замена переменных в двойном интеграле
Вычислить повторный интеграл
Вычислить определенный интеграл
Криволинейные интегралы первого рода
Криволинейные интегралы второго рода
Поверхностные интегралы
Вычисление тройного интеграла
Объем тела вращения
Вычисление площади поверхности вращения
Вычисление площадей плоских фигур
Вычисление статических моментов
Замена переменных в тройном интеграле
Кратные интегралы
Интегральное исчисление в экономике
Вычисление длины дуги плоской кривой
Дифференциальные уравнения
Дифференцируемость функции
Предел функции
Вычислить криволинейный интеграл
Исследовать ряд на сходимость
Разложение в ряд Фурье
Найти область сходимости функционального ряда
Информатика
Информационная безопасность
Инженерная графика
Машиностроительное черчение
Сборочный чертеж
Системы автоматизированного
проектирования (САПР)
Физика
Примеры решения задач по физике

Механика твердого тела

Основы термодинамики
Электрические токи в металлах, вакууме и газах
Механические и электромагнитные колебания
Элементы электронной оптики
Элементы физики твердого тела

Элементы физики атомного ядра

Мировая энергетика и ядерные технологии
Источники энергии
Электротехника и электроника
Примеры решения задач по ТОЭ
Методы расчета электрических цепей
Законы Ома и Кирхгофа
Расчет переходного процесса
Использование программы Mathcad
Трехфазный асинхронный электродвигатель

Исследуем функцию на границе области. Граница состоит из отрезка оси , отрезка оси и отрезка АВ прямой

а) На оси , значит . Эта функция должна быть рассмотрена на отрезке . Так как функция на отрезке непрерывна, она достигает наибольшего и наименьшего значения. Это происходит или в точках стационарности, или на концах отрезка. Определим точку стационарности .

Определим значение функции при  и на концах отрезка [-5,0]

 

б) На оси   значит 

 

  

в) Исследуем функцию z на отрезке AB. Уравнение АВ , значит   

 

 

 

Сравним теперь значение z в стационарной точке (-2,-1) с наибольшими и наименьшими значениями на отрезках ОА, ОВ и АВ.

, получаем, что наименьшего своего значения функция достигла в стационарной точке , а наибольшего – на границе области в точке (0,-5).

21.2 Стационарные точки  находятся вне рассматриваемой области. Наибольшего значения функция достигает на границе области в точке , а . Наименьшего значения функция достигает в точке , а .

 21.3 Обозначим стороны треугольникаи . По формуле Герона площадь треугольника , так как - полупериметр, то  и  становится функцией не трёх, а только двух переменных

Вместо того, чтобы искать экстремум этой функции будем искать экстремум её квадрата . Находим стационарные точки   . Исследованию подлежит только одна точка , так как остальные точки не удовлетворяют смыслу задачи(не может быть треугольника, у которого сторона равна половине периметра).

Проверяем точку М. В ней функция достигает максимума. Итак, при

Так как , то треугольник равносторонний.

22.1

 

22.2 Градиент функции Z и производная по направлению a  связаны формулой - то есть производная по направлению равна проекции вектора-градиента на вектора.

В нашем случае

23.1 Для решения нужно представить себе область интегрирования. Решив систему

можно построить область интегрирования и найти точки пересечения линий, ограничивающих область пересечения.

  

 

Точки пересечения и . Постройте область интегрирования. Теперь изменим порядок интегрирования, то есть внешний интеграл будем брать по , а внутренний по . Заметим, что в пределах изменения  от -1 до 8 область интегрирования ограничена снизу одной линией: параболой, а сверху – двумя: параболой и прямой. Разобьем область интегрирования Д на две  и . Значит, придётся разбить наш интеграл на два. Область   ограничена сверху и снизу ветвями параболы  и , а область  снизу ограничена ветвью параболы , а сверху прямой  (при ).

23.2 По данному уравнению построим кривую в декартовой системе координат. Из уравнения видно, что кривая симметрична и относительно  и относительно . Биссектрисы координатных углов  и  также являются осями симметрии кривой. Найдём точки пересечения с осями. При  ,  получим две точки пересечения с осью   и .

Аналогично при  получим , . Добавим точки при

Построим кривую

Найдём площадь области Д. Перейдём в систему координат, поместив полярную ось вдоль оси , а полюс в начало координат.

При решении геометрических и физических задач во многих случаях для упрощения вычислений двойной интеграл в прямоугольных координатах преобразуется к полярным координатам. Преобразование двойного интеграла от прямоугольных координат x, y к полярным координатам ρ, φ, связанным с прямоугольными координатами соотношениями

x= ρcosφ, y= ρsinφ, осуществляется по формуле

Если область интегрирования D ограничена двумя лучами, выходящими из полюса,

φ =α, φ =β (α<β) и двумя кривыми ρ= ρ1(φ) и ρ= ρ2(φ), где ρ1(φ)≤ρ2(φ), то что двойно интеграл вычисляется по формуле

, где F(ρ, φ)=f(ρcos φ ,ρsin φ), причем сначала вычисляется интеграл , в котором φ считается постоянным.

 


Преобразуем уравнение кривой к полярным координатам, заменив x= ρcosφ, y= ρsinφ.

Получим

 - уравнение линии в полярных координатах.

В силу симметричности кривой, площадь выразиться так:

По формуле интегрирования запишем двукратный интеграл, при этом пределы интегрирования по φ будут от 0 до , а пределы интегрирования по ρ:

Итак

=

.

Навес из поликарбоната односкатный на сайте http://atl-met.ru.
Машиностроительное черчение выполнение четежей