Решение контрольной работы по математике. Примеры решения задач типового расчета

Пример. Для уравнения  найти общий интеграл и частное решение, удовлетворяющее условию .

Решение.

а) Общий интеграл. Делим на .

Отсюда  или   – общий интеграл.

б) Частное решение.

Частное решение: .

с) Особое решение.

 


Возможна потеря решений . Оба эти решения особые.

 

§4. Однородные уравнения.

Определение. Уравнение (1) называется однородным, если  может быть представлена как функция отношения своих аргументов, т.е. . (2)

Таким образом, однородное уравнение имеет вид:  (3)

Теорема. Однородное уравнение (3) имеет общий интеграл:  . (4)

Замечание 1. В доказательстве теоремы мы предполагаем, что . Рассмотрим тот случай, когда . Здесь имеются две возможности.

а)  Тогда   и уравнение (3) принимает вид: .

Это уравнение с разделяющимися переменными  и здесь никаких преобразований делать не нужно.

б) уравнение  удовлетворяется лишь при определенных значениях . В этом случае могут быть потеряны решения . Интегральные кривые суть прямые, проходящие через начало.

Пример. Решить уравнение .

Решение. Уравнение однородное. Полагаем .

Если , то . Отсюда .

 – общий интеграл.

Может быть потеряно решение  или .

Действительно,  есть решение рассматриваемого уравнения и оно не может быть получено из общего интеграла ни при каком значении С, следовательно  есть особое решение.

Замечание 2. Формулу (4) запоминать не следует. Надо уметь ее выводить в каждом конкретном случае, как это сделано в примере.

Замечание 3. Для интегрирования уравнения более общего вида, чем (3) . (6)

(обобщенное однородное) сначала делают замену неизвестной функции и независимой переменной по формулам ; выбирая  и  такими, чтобы исчезли свободные члены в числителе и знаменателе аргумента   в (6), тогда (6) приводится к однородному уравнению.

Машиностроительное черчение выполнение четежей