Решение контрольной работы по математике. Примеры решения задач типового расчета

Математика
Примеры решения задач по математике
Интегральное исчесление
Аналитическая геометрия
Введение в анализ
Задача Коши
Общее решение уравнения теплопроводности
Оценка погрешности и точность вычислений
Элементы линейной алгебры
Примеры решения типовых задач: матрицы
Примеры решения типовых задач:
уравнение плоскости
Решение контрольной работы по
математике
Функция нескольких переменных
Вычислим матрицу
Функции нескольких переменных
Предел функции
Решение примерного варианта контрольной работы
Пример.  Найти производные
Формула Остроградского-Гаусса.
Дивергенция векторного поля
Ротор (вихрь) векторного поля
Поверхностные интегралы второго рода
Локальные максимумы и минимумы ФНП
Вычисление двойного интеграла
Замена переменных в двойном интеграле
Вычислить повторный интеграл
Вычислить определенный интеграл
Криволинейные интегралы первого рода
Криволинейные интегралы второго рода
Поверхностные интегралы
Вычисление тройного интеграла
Объем тела вращения
Вычисление площади поверхности вращения
Вычисление площадей плоских фигур
Вычисление статических моментов
Замена переменных в тройном интеграле
Кратные интегралы
Интегральное исчисление в экономике
Вычисление длины дуги плоской кривой
Дифференциальные уравнения
Дифференцируемость функции
Предел функции
Вычислить криволинейный интеграл
Исследовать ряд на сходимость
Разложение в ряд Фурье
Найти область сходимости функционального ряда
Информатика
Информационная безопасность
Инженерная графика
Машиностроительное черчение
Сборочный чертеж
Системы автоматизированного
проектирования (САПР)
Физика
Примеры решения задач по физике

Механика твердого тела

Основы термодинамики
Электрические токи в металлах, вакууме и газах
Механические и электромагнитные колебания
Элементы электронной оптики
Элементы физики твердого тела

Элементы физики атомного ядра

Мировая энергетика и ядерные технологии
Источники энергии
Электротехника и электроника
Примеры решения задач по ТОЭ
Методы расчета электрических цепей
Законы Ома и Кирхгофа
Расчет переходного процесса
Использование программы Mathcad
Трехфазный асинхронный электродвигатель

Пример. Для уравнения  найти общий интеграл и частное решение, удовлетворяющее условию .

Решение.

а) Общий интеграл. Делим на .

Отсюда  или   – общий интеграл.

б) Частное решение.

Частное решение: .

с) Особое решение.

 


Возможна потеря решений . Оба эти решения особые.

 

§4. Однородные уравнения.

Определение. Уравнение (1) называется однородным, если  может быть представлена как функция отношения своих аргументов, т.е. . (2)

Таким образом, однородное уравнение имеет вид:  (3)

Теорема. Однородное уравнение (3) имеет общий интеграл:  . (4)

Замечание 1. В доказательстве теоремы мы предполагаем, что . Рассмотрим тот случай, когда . Здесь имеются две возможности.

а)  Тогда   и уравнение (3) принимает вид: .

Это уравнение с разделяющимися переменными  и здесь никаких преобразований делать не нужно.

б) уравнение  удовлетворяется лишь при определенных значениях . В этом случае могут быть потеряны решения . Интегральные кривые суть прямые, проходящие через начало.

Пример. Решить уравнение .

Решение. Уравнение однородное. Полагаем .

Если , то . Отсюда .

 – общий интеграл.

Может быть потеряно решение  или .

Действительно,  есть решение рассматриваемого уравнения и оно не может быть получено из общего интеграла ни при каком значении С, следовательно  есть особое решение.

Замечание 2. Формулу (4) запоминать не следует. Надо уметь ее выводить в каждом конкретном случае, как это сделано в примере.

Замечание 3. Для интегрирования уравнения более общего вида, чем (3) . (6)

(обобщенное однородное) сначала делают замену неизвестной функции и независимой переменной по формулам ; выбирая  и  такими, чтобы исчезли свободные члены в числителе и знаменателе аргумента   в (6), тогда (6) приводится к однородному уравнению.

Машиностроительное черчение выполнение четежей