Решение контрольной работы по математике. Примеры решения задач типового расчета

 

Вычисление площади поверхности вращения

Пусть кривая АВ является графиком функции у = f(х) ≥ 0, где х  [а;b], а функция у = f(х) и ее производная у' = f'(х) непрерывны на этом отрезке.

Найдем площадь S поверхности, образованной вращением кривой АВ вокруг оси Ох (рис 8).

Применим схему II (метод дифференциала).

1. Через произвольную точку х  [а; b] проведем плос­кость П, перпендикулярную оси Ох. Плоскость П пере­секает поверхность вращения по окружности с радиусом у - f(х). Величина S поверхности части фи­гуры вращения, лежащей левее плоскости, является функ­цией от х, т. е. s = s(х) (s(а) = 0 и s(b) = S).

2. Дадим аргументу х приращение Δх = dх. Через точку х + dх   [а; b] также проведем плоскость, перпендику­лярную оси Ох. Функция s = s(х) получит приращение Δs, изображенного на рисунке в виде “пояска”.

Подпись: Рис 8Найдем дифференциал площади ds, заменяя образо­ванную между сечениями фигуру усеченным конусом, об­разующая которого равна dl, а радиусы оснований рав­ны у и у + dу. Площадь его боковой поверхности равна ds =   (у + у + dу) • d1 = 2ydl + dydl. Отбрасывая произведение dу d1 как бесконечно малую высшего порядка, чем ds, получаем ds = 2уdl, или, так как d1 = dx.

Интегрируя полученное равенство в пределах от х = а до х = b, получаем

S= 2ydx.

Если кривая AB задана параметрическими уравнениями x = x(t), y = y(t), t≤ t ≤ t, то формула для площади поверхности вращения принимает вид

S = 2dt.

Пример: Найти площадь поверхности шара радиуса R.[5]

Решение: Можно считать, что поверхность шара образована вращением полуокружности y = , -R ≤ x ≤ R, вокруг оси Ox. По формуле S= 2ydx находим

S = 2 =

Машиностроительное черчение выполнение четежей