Решение контрольной работы по математике. Примеры решения задач типового расчета

Математика
Примеры решения задач по математике
Интегральное исчесление
Аналитическая геометрия
Введение в анализ
Задача Коши
Общее решение уравнения теплопроводности
Оценка погрешности и точность вычислений
Элементы линейной алгебры
Примеры решения типовых задач: матрицы
Примеры решения типовых задач:
уравнение плоскости
Решение контрольной работы по
математике
Функция нескольких переменных
Вычислим матрицу
Функции нескольких переменных
Предел функции
Решение примерного варианта контрольной работы
Пример.  Найти производные
Формула Остроградского-Гаусса.
Дивергенция векторного поля
Ротор (вихрь) векторного поля
Поверхностные интегралы второго рода
Локальные максимумы и минимумы ФНП
Вычисление двойного интеграла
Замена переменных в двойном интеграле
Вычислить повторный интеграл
Вычислить определенный интеграл
Криволинейные интегралы первого рода
Криволинейные интегралы второго рода
Поверхностные интегралы
Вычисление тройного интеграла
Объем тела вращения
Вычисление площади поверхности вращения
Вычисление площадей плоских фигур
Вычисление статических моментов
Замена переменных в тройном интеграле
Кратные интегралы
Интегральное исчисление в экономике
Вычисление длины дуги плоской кривой
Дифференциальные уравнения
Дифференцируемость функции
Предел функции
Вычислить криволинейный интеграл
Исследовать ряд на сходимость
Разложение в ряд Фурье
Найти область сходимости функционального ряда
Информатика
Информационная безопасность
Инженерная графика
Машиностроительное черчение
Сборочный чертеж
Системы автоматизированного
проектирования (САПР)
Физика
Примеры решения задач по физике

Механика твердого тела

Основы термодинамики
Электрические токи в металлах, вакууме и газах
Механические и электромагнитные колебания
Элементы электронной оптики
Элементы физики твердого тела

Элементы физики атомного ядра

Мировая энергетика и ядерные технологии
Источники энергии
Электротехника и электроника
Примеры решения задач по ТОЭ
Методы расчета электрических цепей
Законы Ома и Кирхгофа
Расчет переходного процесса
Использование программы Mathcad
Трехфазный асинхронный электродвигатель

 

Задача 11. Вычислить .

Решение. При интегрировании иррациональных выражений вида  (здесь R – рациональная функция;  - целые числа) подстановка , где к – наименьшее общее кратное знаменателей , позволяет избавиться от иррациональности. В данном случае  Наименьшее общее кратное этих чисел равно 6. Применяем подстановку  

Тогда  и

Возвращаясь к переменной х с учетом того, что , получим

Задача 12. Вычислить .

Решение. При вычислении интегралов вида , где R – рациональная функция, используется универсальная тригонометрическая подстановка , приводящая к интегралам от рациональных относительно t функций, при этом

, .

Из равенства  находим .

В данном случае получаем

Сделаем замену

Тогда

Возвращаясь к переменной х, получим

Задача 13. Вычислить .

Решение. Интегралы вида , , , где R – рациональная функция, приводятся к интегралам вида , если выполнить замену переменной:

- для первого интеграла  (или );

- для второго интеграла (или );

- для третьего интеграла  (или ).

Данный интеграл вычисляем заменой .

Тогда .

Получаем

.

,

тогда

Возвращаясь к старой переменной при , получаем

Задача 14. Вычислить

Решение. Для вычисления интеграла разложим подынтегральную функцию – дробь – в сумму простейших дробей. Множителю соответствует сумма двух простейших дробей , а множителю  - дробь .

Тогда подынтегральная функция будет иметь вид

Правую часть равенства приведем к общему знаменателю (он должен быть равен знаменателю левой части равенства) и приравняем числители получившихся дробей:

.

Найдем А, В, С. Сначала применяем метод частных значений. Равенство должно выполняться при любых х, поэтому подставим вместо х «хорошие» числовые значения (обращающие часть скобок в 0). Здесь это 1 и -2. При  получим  и . При  равенство принимает вид , а . В найдем методом неопределенных коэффициентов, согласно которому приравнивают коэффициенты при одинаковых степенях х в левой и правой частях равенства. Например, при . Тогда .

Итак, 

Вычисляем интеграл

Машиностроительное черчение выполнение четежей