Решение контрольной работы по математике. Примеры решения задач типового расчета

Криволинейный интеграл второго рода Вычислить интеграл

Задача 29. Найти общее решение дифференциального уравнения 

Решение. Это линейное однородное дифференциальное урав­нение 3 порядка с постоянными коэффициентами. Составим характеристическое уравнение (см. прил.2, п.1)

Так как его корни действительны и различны (), общее решение исходного уравнения имеет вид

 или

Задача 30. Найти общее решение дифференциального уравне­ния 

Решение. Данное уравнение является линейным однородным дифференциальным уравнением 4 порядка с постоянными коэффициентами.

Составим характеристическое уравнение (см. прил. 2, п.1)

Паре корней  соответствует решение

 

Комплексным корням  соответствует решение

Общее решение исходного уравнения есть сумма полученных решений

Задача 31. Указать вид частного решения дифференциального уравне­ния 

Решение. Это линейное неоднородное дифференциальное уравнение 2 порядка с постоянными коэффициентами. Согласно теории таких уравнений (см. прил. 2, п.2) сначала решаем характеристическое уравнение

Затем правую часть уравнения представляем в виде

Получим  Здесь,

Частное решение, определяемое по правой части, будет иметь вид

 

где S – показатель кратности числа 5 как корня характеристического уравнения  

Итак,  или

Машиностроительное черчение выполнение четежей