Решение контрольной работы по математике. Примеры решения задач типового расчета

Гражданские атомные плавсредства

Задача 20. Вычислить ,

где D – правая половина кольца (см. рисунок).

Решение. Будем вычислять интеграл в полярных координатах по формуле (35):

Здесь .

Так как  (формулы перехода к полярным координатам), то  

Тогда уравнения окружностей  и  принимают вид  

Следовательно,

Ряды

Задача 21. Определить, какие ряды сходятся:

А)  Б)   В)

Решение.

1. К ряду применим радикальный признак Коши: если , то положительный ряд  сходится при  и расходится, когда

Так как , то ряд расходится.

2. Рассмотрим ряд  Проверим необходимое условие сходимости: если ряд   сходится, то .

Поскольку , необходимое условие не выполняется, значит, ряд расходится.

3. При исследовании сходимости ряда  можно воспользоваться предельным признаком сравнения положительных рядов: если существует конечный и отличный от нуля предел  то положительные ряды  и одинаковы в смысле сходимости.

Для сравнения возьмем обобщенный гармонический ряд

, сходящийся при  и расходящийся для  При  получим сходящийся ряд .

Применим теорему сравнения

 

Предел конечен и отличен от нуля, поэтому ряд  также сходится.

Машиностроительное черчение выполнение четежей